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Abstract Collectively, pediatric low-grade gliomas account
for most brain tumors reported in children. Surgery is typically
curable for operable lesions. However, more effective thera-
pies are required for inaccessible tumors, both to overcome
refractory disease and to minimize the toxicity associated with
conventional adjuvant chemotherapy and radiotherapy regi-
mens. Recent years have witnessed rapid improvements in our
understanding of the molecular pathogenesis of several child-
hood tumors, including low-grade gliomas. As a result, sev-
eral novel compounds targeting and inhibiting critical compo-
nents of molecular signaling pathways purported to be over-
active in the disease have been developed. This article sum-
marizes the most recent literature evaluating such novel
targeted agents in childhood low-grade gliomas.
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Introduction

Pediatric low-grade gliomas are the commonest group of brain
tumors found in children, accounting for approximately 40 %
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of all reported cases [1]. With a combined annual incidence of
up to 12 cases per million children in Western societies [2], the
group comprises a spectrum of tumor subtypes with differing
histopathological, demographic, and radiological features
(Table 1). Pilocytic astrocytomas represent the largest recog-
nized histological subgroup, although as many as one quarter
of low-grade gliomas cannot be classified according to current
World Health Organization criteria [3]. This reflects the het-
erogeneous spectrum of tumors encountered and, in turn,
questions the suitability of the ‘one treatment fits all” approach
currently used when managing these lesions with convention-
al therapy.

Survival outcomes for pediatric low-grade gliomas are
generally very good, although this is influenced by the degree
of tumor resection, histological tumor classification, presence
of disseminated disease, or concurrent diencephalic syndrome
[4]. Indeed, long-term cure rates of over 90 % have been
reported for cases achieving complete or near total tumor
removals [5, 6]. However, excision is not feasible for symp-
tomatic or growing midline gliomas of the hypothalamus/
optic pathway and brainstem. In this context, chemotherapy
has now become first-line therapy for the majority of affected
children, particularly those with neurofibromatosis type 1
(NF1), in order to delay or avoid radiotherapy and its adverse
sequelae [7-9]. The challenge for such chemotherapeutic
strategies is to control subsequent tumor recurrence or pro-
gression, currently observed in up to two thirds of cases [10],
and minimize inherent toxicity.

To address these issues, modern research has strived to
increase our understanding of the biological pathogenesis of
pediatric low-grade gliomas in order to improve on conven-
tional treatments. Building on historical, observed associa-
tions with genetic predisposition syndromes such as NF1
and tuberous sclerosis, ongoing work has now led to the
identification of deregulated genetic pathways underpinning
tumor formation and to the development of molecularly
targeted therapies that are hoped will improve efficacy at
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minimal burden to normal, often developing, tissue. This
article reviews the most recent principal literature evaluating
such novel targeted agents for pediatric low-grade gliomas.

Downstream Drug Targeting
of the RAS/RAF/Mitogen-Activated Protein Kinase
Pathway

The most frequent genetic alterations identified in pediatric
low-grade gliomas to date implicate BRAF, a downstream
member of the RAF serine—threonine kinase family and a
key regulator of the mitogen-activated protein kinase
(MAPK) pathway responsible for controlling cell division,
differentiation, and invasion (Fig. 1) [11].

Molecular work has shown that most pediatric pilocytic
astrocytomas demonstrate a segmental duplication at chromo-
some band 7q34 [12, 13], resulting in a fusion transcript
between the MAPK-activating domain of BRAF and another
gene, KIAA1549 [13, 14]. This oncogenic fusion is the
commonest molecular anomaly reported in nonsyndromic
pilocytic astrocytomas of childhood [3], particularly those
located in the posterior fossa [3, 13, 15-17]. Although the
fusion is typically not observed in patients with NF1 [18], the
mutated NF1 protein also loses an inherent inhibitory effect on
BRAF activity [19], thereby causing corresponding MAPK

Fig. 1 Novel therapeutic agents Lenalidomide
targeting components of the cell J_
signaling pathways frequently
activated in pediatric low-grade
gliomas. EGFR epidermal growth
factor receptor, ERK extracellular-
signal-regulated kinase, NF'/
neurofibromatosis 1, mTOR
mammalian target of rapamycin,
PDGFR platelet-derived growth
factor receptor, PI3K
phosphatidylinositol 3-kinase,
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signaling activation. Paradoxically, recent studies have sug-
gested that the presence of the BRAF:KIAA1549 fusion may
confer a less aggressive clinical phenotype, and is therefore
associated with better outcome [18, 20], although this finding
is not universal from comparative retrospective work [21, 22].
Molecular evaluation of a large, prospective clinical trial
cohort is therefore required to accurately determine the true
prognostic significance. Whether the fusion represents a
potential drug target also remains unclear.

Although less common, point mutations of BRAF and other
MAPK pathway members such as KRAS are also observed in
pediatric low-grade glioma [13, 16, 22-25, 26, 27]. The
BRAFY®°F mutation, resulting in the replacement of valine
with glutamic acid at codon 600 of BRAF; is the most frequent
reported. Indeed, in a recent study analyzing the presence of
BRAFY%°°E mutations in 1,320 tumors of the central nervous
system (CNS), this mutation was identified in approximately
9 % of extracerebellar pilocytic astrocytomas [26¢]. Of note,
the incidence was higher in other low-grade glioma subtypes,
especially pleomorphic xanthoastrocytomas (66 %) and
ganglioglioma (18 %), an observation confirmed by other
groups [28-30].

A retrospective analysis of 198 pediatric low-grade glio-
mas reported a trend towards poorer progression-free survival
for children with BRAFY*°°F mutated tumors [20], suggesting
that targeting this anomaly therapeutically may improve
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patient survival outcomes. Indeed, novel agents inhibiting this
mutation, such as vemurafenib and dabrafenib, have been
developed. Although their use in childhood glioma therapy
is emergent, a recent case report on the successful manage-
ment of a pediatric ganglioglioma with vemurafenib provides
a source for optimism [31¢]. Early mutation screening to
identify patients likely to benefit from these inhibitors is
therefore fundamental and forms the basis of the current phase
I/Ila international study of dabrafenib in children with
BRAFY*E_positive solid tumors, including low-grade glio-
mas (ClinicalTrials.gov Identifier NCT01677741).

Although the evolving era of novel BRAF inhibitors repre-
sents an exciting, potential paradigm shift in the management
of childhood low-grade gliomas, clinicians are urged to
temper enthusiasm for their universal efficacy. For instance,
the value of such drugs against gliomas exhibiting the
BRAF:KIAA1549 fusion is unclear. A recent phase II study
of sorafenib [a multi-kinase inhibitor targeting BRAF, vascu-
lar endothelial growth factor receptor, platelet-derived growth
factor receptor (PDGFR), and c-KIT) in 12 children with
recurrent low-grade gliomas, including three demonstrating
BRAF:KIAA1549 fusion, actually reported significant early
progression rates, potentially indicating downstream paradox-
ical extracellular-signal-regulated kinase activation [32].
Likewise, resistance to vemurafenib analogues and subse-
quent growth activation in low-grade glioma cell lines ex-
pressing the BRAF:KIAA1549 fusion have been observed
in vitro [33, 34].

Other downstream inhibitors of the MAPK signaling cas-
cade are also currently being evaluated in clinical trials. For
instance, phase I and II studies of AZD6244, a small-molecule
inhibitor of the MAPK activator kinases MEK1 and MEK2,
are ongoing in children with recurrent or refractory low-grade
gliomas (ClinicalTrials.gov Identifiers NCT01386450 and
NCTO01089101), after preclinical work demonstrated activity
against pilocytic astrocytoma cell lines [35].

Downstream Drug Targeting of the Phosphatidylinositol
3-Kinase/Mammalian Target of Rapamycin Pathway

Another tyrosine-kinase-driven signaling cascade implicated
in pediatric low-grade glioma pathogenesis is the phos-
phatidylinositol 3-kinase (PI3K)/mammalian target of
rapamycin (mTOR) pathway, which regulates cell growth,
protein synthesis, and apoptosis [11]. The archetypical low-
grade glioma associated with mTOR activation is the
subependymal giant cell astrocytoma (SEGA) in patients with
tuberous sclerosis complex (TSC).

TSC is an autosomal dominant genetic disorder character-
ized by germline mutations in two tumor suppressor genes—
TSCI (hamartin) or 7SC2 (tuberin)—resulting in the develop-
ment of benign tumors in multiple organ systems, including

@ Springer

the brain, kidney, skin, heart, retina, and lungs [36]. These two
genes encode the hamartin—tuberin protein complex, which in
turn restricts downstream activation of mTOR; specifically the
subunit mMTOR complex 1. When the TSC genes are deficient,
mTOR complex 1 is constitutively upregulated, with conse-
quent abnormal cellular growth and proliferation [37]. Up to
15 % of TSC patients develop SEGAs, typically located
adjacent to the intraventricular foramina of Munro, causing
obstructive hydrocephalus [38, 39]. Historically, SEGAs re-
quired surgical resection if they caused symptomatic growth
as they were resistant to conventional low-grade glioma che-
motherapy therapy and radiation therapy [40]. However, the
successful targeted treatment of SEGASs is now achievable, an
evolution that represents the most significant advance for
molecular therapy in pediatric low-grade gliomas to date
[41, 42].

The first effective oral mTOR inhibitor in TSC-associated
SEGA was reported in 2006, when five individuals all
exhibited regression of their lesions following administration
of the posttransplantation immunosuppressant sirolimus
(rapamycin) [41]. Another mTOR inhibitor, everolimus, has
also demonstrated efficacy against SEGAs. An initial, single-
center, prospective, open-label study produced at least 30 %
tumor volume reduction in 21 of 27 enrolled TSC patients,
most of whom were below 18 years of age [42]. More recent-
ly, this effect was confirmed by Franz et al. [43¢¢] through a
double-blind, placebo-controlled randomized trial of 117 pa-
tients in which everolimus was analyzed against placebo. One
third of those in the everolimus arm demonstrated a SEGA
volume reduction of 50 % or more compared with none of the
placebo group [43e¢]. As with preceding studies, tumor re-
growth occurred on discontinuation of inhibitor therapy,
but retreatment proved successful. Of interest, mTOR
inhibition also appeared to have activity against other clinical
manifestations of TSC such as skin lesions and renal
angiomyolipomata [43e°].

At present, the Food and Drug Administration has ap-
proved everolimus exclusively for the treatment of surgically
unresectable SEGAs in the context of TSC. Nevertheless,
several trials are now investigating the effect of mTOR inhi-
bition on TSC-induced epilepsy (Clinical Trials.gov Identifiers
NCT01070316 and NCT01713946), neuropsychological
disorders (ClinicalTrials.gov Identifier NCT01730209),
and neurocognitive deficits (ClinicalTrials.gov Identifier
NCT01954693).

Indeed, the benefit of mTOR inhibitors may not be exclu-
sive to TSC-associated SEGA, with evidence of potential
activity in other pediatric low-grade gliomas emerging.
Proteomic and immunohistochemical analyses have shown
that NF1-associated low-grade glioma subsets demonstrate
differential levels of mTOR activation [44, 45], with pilocytic
astrocytomas in particular demonstrating significantly elevat-
ed mTOR signaling [45, 46]. Evidence from neural stem cell



Curr Neurol Neurosci Rep (2014) 14:441

Page 5 of 9, 441

work has also suggested cross talk between the RAF and PI3K
pathways, with downstream convergence at mTOR, which
functions as a growth control center, activated by unique
pathway-defined mechanisms (MEK-induced 7SC?2 inactiva-
tion or AKT activation, respectively) [47].

Clinical work is now attempting to verify the in vitro
implication that mTOR inhibitors could be effective agents
against either sporadic or NF1-related pediatric low-grade
gliomas. At present, the results are variable. A prospective,
multi-institutional phase II study of everolimus in 23 non-NF1
children with recurrent or progressive low-grade gliomas has
just been completed, with provisional encouraging results
demonstrating either partial response (n=4) or stable disease
(n=13) by the end of therapy in 74 % of the cohort [48].
Assessment of NF-1 associated gliomas is now under way
(ClinicalTrials.gov Identifier NCT01158651). In contrast, an-
other recent phase I/II study reported the use of rapamycin in
combination with the epidermal growth factor receptor
(EGFR) inhibitor erlotinib in 19 children with recurrent low-
grade gliomas, eight of whom had NF-1 [49]. Although the
combination was well tolerated, response rates were disap-
pointing, with only one NF-1 patient demonstrating objective
response and two children remaining progression free for
longer than 18 months after treatment. These findings suggest
that identifying future molecular predictors of response to
these targeted inhibitors will be as important as evaluating
the agents themselves.

Other members of the PI3K/mTOR pathway are also being
targeted by novel inhibitors. For instance, a Children’s Oncology
Group (COG) phase I study of the AKT inhibitor MK2206 has
just been completed for children with refractory solid tumors,
including intracranial gliomas, after encouraging preclinical
analysis (ClinicalTrials.gov Identifier NCT01231919); the
results are awaited.

Upstream Targeting and Antiangiogenic Agents

The receptor tyrosine kinases (RTKs), such as vascular endo-
thelial growth factor receptor, EGFR, and platelet-derived
growth factor receptor (PDGFR), are mutual upstream mem-
bers of both the BRAF/MAPK signaling pathway and the
PI3K/mTOR signaling pathway (Fig. 1). They function as
transmembrane regulators of key cellular processes such as
proliferation, differentiation, and metabolism [50]. They also
play a critical role in tumor angiogenic signaling, making
them significant therapeutic drug targets for inhibition.
Current novel agents used in this context are either monoclo-
nal antibodies directed against growth factor ligands or inhib-
itors directly targeting the tyrosine kinase domains.

For refractory low-grade gliomas of childhood, the most
evaluated agent with this function remains bevacizumab, a
monoclonal antibody targeting vascular endothelial growth

factor [51, 52, 53¢]. In almost all recorded pediatric cases
(55 of 56), this has been administered in conjunction with
the topoisomerase I inhibitor irinotecan. A recent phase II
study of 14 children with recurrent or progressive disease
evaluated bevacizumab-based therapy administered for a me-
dian duration of 12 months [51]. Twelve patients (86 %)
demonstrated an objective response and/or clinical improve-
ment with minimal toxicity. Although promising, progression
occurred rapidly for almost all children on discontinuation of
therapy. Nevertheless, retreatment proved feasible and effec-
tive. Another institutional study of bevacizumab and
irinotecan in seven patients with refractory low-grade gliomas
reported tumor shrinkage in six cases (86 %) [52]. The toxicity
profile appeared tolerable, with the most frequent events being
grade I proteinuria and hypertension.

A curtailed follow-up period for the above-mentioned stud-
ies restricted any meaningful progression-free survival analy-
sis. To address this, the Pediatric Brain Tumor Consortium
(PBTC) recently published a protracted phase II analysis of
bevacizumab and irinotecan in 35 evaluable children with
recurrent low-grade gliomas [53¢]. Although the regimen
was again relatively well tolerated (with adverse effects in-
cluding hypertension, proteinuria, lethargy, and epistaxis), and
disease stability was observed for over 80 % of the cohort after
6 months of therapy, making it a feasible therapeutic option,
only two patients demonstrated a radiological response to
therapy, and the 2-year progression-free survival rate was
48 %, comparable with but no better than that of current
conventional strategies [53¢, 54, 55]. Explanations for the
discrepancy in response rates between this analysis and the
preceding studies were elusive, but may reflect discrepant
cohort size, drug dosing/scheduling, tumor histological fea-
tures, and patient demographics. In addition, these findings
suggest that radiological response to therapy cannot predict
progression-free survival for these tumors. Prospective trials
will be required to validate these findings and also evaluate
any longer-term sequelae.

Small-molecule inhibitors of the VEGF receptor have also
been developed and are currently being investigated by phase
I feasibility studies in children. These include cediranib
(ClinicalTrials.gov Identifier NCT00326664) and pazopanib
(ClinicalTrials.gov Identifier NCT00929903). Sunitinib has
also been investigated in such dose-escalation studies and,
although dose-dependent cardiac toxicity precluded its wide-
spread endorsement, it did produce disease stability for one
child with a ganglioglioma [56]. As described previously,
other RTK inhibitors already evaluated in the context of
progressive pediatric low-grade glioma include the EGFR
antagonist erlotinib [49] and the multi-kinase inhibitor soraf-
enib [32], and the PDGFR inhibitor nilotinib is currently being
assessed in conjunction with conventional vinblastine as part
of'a European, open-label phase I/II study (ClinicalTrials.gov
Identifier NCT01887522).
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Antiangiogenic agents also represent an attractive option
in treating CNS tumors as their mechanism of action,
targeting intravascular endothelial cells, is not hindered
by the blood-brain barrier. In addition to RTK inhibi-
tors, other less-specific antiangiogenic agents or drug
combinations have therefore been evaluated for pediatric
low-grade gliomas. For instance, a phase I study of the
oral thalidomide analogue lenalidomide by the PBTC
recently reported either objective response (n=2) or
prolonged disease stability for most of 26 children with
previous refractory disease [57¢]. The commonest toxic-
ity was myelosuppression. As a result, a COG phase Il
randomized study of lenalidomide in children with re-
current or progressive optic pathway gliomas and pilocytic
astrocytomas has now commenced, comparing a low-dose
(20 mg/m?) against a high-dose (115 mg/m?) regimen;
(COG trial ACNS1022, ClinicalTrials.gov Identifier
cNCT01553149).

Preclinical work has also suggested that the metronomic
administration of antiangiogenic agents may have more cyto-
toxic efficacy against tumor cells than the classic dose-
intensive, interval scheduling of conventional chemotherapy
[58-60]. To evaluate this hypothesis, a phase II trial of mul-
tiple agents with antiangiogenic properties (celecoxib, thalid-
omide, fenofibrate, cyclophosphamide, etoposide) given in a
metronomic dosing schedule over 27 weeks was assessed in
101 children with recurrent CNS tumors, including 12 patients
with low-grade glioma. Of these, nine (75 %) demonstrated
stable disease or better, although only seven (58 %) were able
to complete the full treatment, with adverse events primarily
being hematological [61]. This suggests that further investi-
gation of this approach is warranted in larger low-grade glio-
ma cohorts, albeit with possibly fewer agents to reduce any
accumulative toxicity.

High-Resolution Genomic Studies and Potential
Therapeutic Targets

Other than the aforementioned mutations or duplications in-
volving BRAF in certain types of tumor, few other genetic
anomalies have been identified that may characterize other
low-grade glioma subgroups. To address this, several interna-
tional research groups have recently performed high-
resolution tumor genomic analyses, including whole genome
sequencing (WGS), reporting novel aberrations and possibly
potential therapeutic targets [62—64].

One WGS analysis of 39 low-grade glioma/glioneuronal
childhood tumors identified novel BRAF/RAF'1 abnormalities
including FXRI:BRAF, BRAF:MACF1, and QKI:RAF1 fu-
sions [63], which supplemented previous work also identify-
ing previously unknown MAPK gene fusions in pilocytic
astrocytomas such as SRGAP3:RAF1 and FAMI131B:BRAF

@ Springer

[16, 23, 65]. The study also reported a novel duplication in
another RTK member, fibroblast growth factor receptor 1
(FGFRI). This was present in almost one quarter of diffuse
(World Health Organization grade II) astrocytomas analyzed,
a subgroup identified by this and another high-resolution
genomic study to also be enriched for rearrangements of the
transcription factor activator genes MYB and MYBLI [63, 64].
Recurrent activating mutations of FGFRI have also been
reported in a noncerebellar subset of 96 pediatric pilocytic
astrocytomas interrogated using WGS by the International
Cancer Genome Consortium [62]. Duplication of FGFRI
and MYB overexpression in low-grade gliomas has been
shown to activate the BRAF/MAPK and PI3K/mTOR path-
ways [63], warranting their consideration as future therapeutic
targets for inhibition as they have been used in other pediatric
cancers [66—68].

Conclusion

Our understanding of low-grade glioma pathogenesis has
improved in recent times. Nevertheless, the mechanistic action
of conventional chemotherapy for pediatric low-grade glio-
mas remains largely unclear, in turn hindering accurate expla-
nations and remedies for any subsequent drug resistance ob-
served. In addition, the use of targeted molecular agents
remains in its infancy. Although certain tumors such as
pilocytic astrocytomas may well be caused by ‘single path-
way’ disruption [62, 63], the pathogenesis of other lesions
may implicate a cascade of multiple signaling pathways, such
that exploiting a single aberration may ultimately prove un-
successful. Tumor cells may also activate other escape mech-
anisms to confer therapeutic resistance. Indeed, identifying
molecular predictors of response to this mode of treatment in
large prospective cohorts remains necessary. It is therefore
plausible that, for certain tumors, targeted agents will only
be successful if they are combined with other conventional
chemotherapeutic drugs or synergistic small-molecule inhibi-
tors. Current clinical trials should provide more insight in this
regard. More work is also required to elucidate the CNS
penetrance of many novel inhibitors as clearly this will impact
on their antitumor activity, irrespective of purported function.
Additional matters to consider include the as yet unknown
long-term toxicity profiles and impact on normal tissue devel-
opment of these agents.

Nevertheless, we are in an exciting therapeutic era for
children with low-grade gliomas, encouraging optimism
among the pediatric neuro-oncology community, while rais-
ing new questions such as whether certain novel agents, for
instance, in patients with TSC, should be considered for life.
Ultimately, it is hoped that a targeted management strategy
can improve long-term outcomes for the subset of affected
children who are not cured by current approaches.
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